Amidation of single-walled carbon nanotubes by a hydrothermal process for the electrooxidation of nitric oxide.

نویسندگان

  • Kan Kan
  • Tingliang Xia
  • Li Li
  • Hongmei Bi
  • Honggang Fu
  • Keying Shi
چکیده

Single-walled carbon nanotubes (SWCNTs) have been amidated by hydrothermal treatment with different aliphatic amines. The amido groups modified on the surface of the SWCNTs were characterized by Fourier transform infrared spectroscopy. The electrooxidation of nitric oxide (NO) at the modified electrodes of amidated SWCNTs was investigated. The modified electrodes of amidated SWCNTs exhibited different electrocatalytic activity for NO when different aliphatic amines were being used. The electrode amidated by ammonia has the highest activity, which is 1.8 times value of the SWCNT modified electrode. The electrocatalytic activity of the amidated SWCNT modified electrodes depends on the length of the alkyl groups. The results demonstrate that hydrothermal treatment is an efficient way to modify SWCNTs with amines, and the reaction rate of NO electrooxidation can be changed by the amidation of SWCNTs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid nanofluid based on CuO nanoparticles and single-walled Carbon nanotubes: Optimization, thermal, and electrical properties

The purpose of this study is to use the thermal and electrical conductivities of copper oxide nanoparticles and carbon nanotubes for the preparation of high-performance nanofluids for achieving better heat transfer properties. These nanofluids consist of a water/Ethylene Glycol solution containing single-wall carbon nanotubes (SWCNTs) and copper oxide nanoparticles (CuONPs). The effects of such...

متن کامل

A RIGOROUS COMPARISON OF METHODS FOR MULTI-WALLED CARBON NANOTUBES PURIFICATION USING RAMAN SPECTROSCOPY

Multi-walled carbon nanotubes (MWNT’s) were synthesized using chemical vapor deposition (CVD) method in a fluidized bed reactor under the flow of methane and hydrogen gases. A Cobalt-molybdenum/magnesium oxide (Co-Mo/MgO) nanocatalyst was used as the catalyst of the process. The samples were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The effects of d...

متن کامل

حذف کادمیوم از محیط‌های آبی با استفاده از نانولوله‌های کربنی تک جداره عامل‌دار شده با ال-سیستئین

Background and purpose: Cadmium is a very toxic metal that have adverse effects on human health and aquatic environments even at low concentrations, therefore, efforts should be made to eliminate this metal from aquatic ecosystem. The aim of this study was to investigate the efficacy of L-cysteine functionalized single-walled carbon nanotubes in removing cadmium from aqueous environments. This ...

متن کامل

In Vivo Delivery of Nitric Oxide-Sensing, Single-Walled Carbon Nanotubes.

Detection of nitric oxide (NO) in vivo by single-walled carbon nanotubes (SWNT) is based on the fluorescent properties of SWNT and the ability of NO to quench the fluorescence signal. Alterations of the signal can be utilized to detect a small molecule in vivo that has not previously been possible by other assay techniques. The protocols described here explain the techniques used to prepare NO-...

متن کامل

Sulfur Dioxide Internal and External Adsorption on the Single-Walled Carbon Nanotubes: DFT Study

Density-functional theory is used to investigate sulfur dioxide physisorption inside and outside of single-wall carbon nanotube of (5,0) and (5,5). This study is conducted at B3LYP/6-31G* level of theory. Sulfur dioxide molecule is studied with axis oriented parallel or perpendicular to the nanotube wall. Both internal and external adsorption on nanotubes is increased with the angle of interact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 18  شماره 

صفحات  -

تاریخ انتشار 2009